Лекция 5. Графы. Раскраски графов. Хроматическое число графа. Критерий двуцветности графа. Верхние оценки хроматического числа графа.

Лектор — д.ф.-м.н. Селезнева Светлана Николаевна selezn@cs.msu.su

Лекции по «Дискретным моделям». Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте http://mk.cs.msu.su

Раскраска вершин графа

 $\mathsf{Packpacka}$ графа G = (V, E) в k цветов — отображение

$$\rho: V \to \{1, 2, \dots, k\},\$$

где из $(v,w) \in E$ следует $\rho(v) \neq \rho(w)$.

Другими словами, любые смежные вершины обязаны быть окрашены в разные цвета.

Хроматическое число $\chi(G)$ графа G — наименьшее возможное число цветов, в которое можно окрасить его вершины.

Двуцветные графы

Граф G — двуцветный, если $\chi(G)=2$.

Теорема 1. Граф G = (V, E) — двуцветный тогда и только тогда, когда в нем нет циклов нечетной длины.

Доказательство.

1. Если в графе G есть цикл нечетной длины, то вершины этого цикла в два цвета не раскрасить.

Двуцветные графы

Доказательство.

2. Пусть теперь в графе G нет циклов нечетной длины.

Будем считать, что G — связный граф, иначе можно провести рассуждения для каждой его компоненты связности.

Построим в графе G его остовное дерево D.

В любом дереве для каждой пары вершин $v,w\in V$ существует ровно одна цепь из v в w.

Пусть $v \in V$ — какая-то вершина.

Рассмотрим раскраску ρ вершин $w \in V$ дерева D в два цвета:

ho(w)=1, если длина единственной цепи из v в w четна;

 $\rho(w) = 2$, если длина единственной цепи из v в w нечетна.

Покажем, что при такой раскраске в графе G не окажется ребер, оба конца которых окрашены в один и тот же цвет.

Верхние оценки

Двуцветные графы

Доказательство.

Предположим противное: пусть $(u, w) \in E$ и $\rho(u) = \rho(w)$.

Рассмотрим в графе G замкнутый маршрут M:

сначала цепь из u в v в дереве D.

затем цепь из v в w в дереве D

и по ребру (w, u) в u.

Длина этого маршрута нечетна, т.к. у длин цепей из u в v и из v в w в дереве D одинаковая четность.

Значит, из указанного замкнутого маршрута M можно выделить цикл нечетной длины. Противоречие.

Оценка хроматического числа

Теорема 2. Для произвольного графа G = (V, E) верно $\chi(G) \leq \Delta(G) + 1$.

Доказательство: индукция по числу вершин n = |V|.

Базис индукции n = 1 верен.

Индуктивный переход: пусть утверждение верно для всех графов с *п* вершинами.

Рассмотрим граф G = (V, E) с n+1 вершинами.

Оценка хроматического числа

Пусть $v \in V$ и G' = G - v.

Для графа G' верно предположение индукции, т.е.

$$\chi(G') \leq \Delta(G') + 1 \leq \Delta(G) + 1.$$

Перенесем раскраску вершин графа G' в $\chi(G')$ цветов на вершины графа G.

При этом вершина v останется неокрашенной.

Окрасим вершину v в цвет, который не встречается среди цветов вершин, смежных с ней.

Тогда $\chi(G) \leq \Delta(G) + 1$, т.к. вершина v смежна не более, чем с $\Delta(G)$ вершинами.

Верхняя оценка хроматического числа

Теорема 3. Если в графе G=(V,E) с $\Delta(G)\geq 3$ найдется вершина $v\in V$, для которой $d_G(v)<\Delta(G)$, то $\chi(G)\leq \Delta(G)$.

Доказательство: индукция по числу вершин n = |V|.

Базис индукции верен.

Индуктивный переход: пусть утверждение верно для всех графов с *п* вершинами.

Рассмотрим граф G = (V, E) с n+1 вершинами.

Выберем $v \in V$ с $d_G(v) < \Delta(G)$.

Положим G' = G - v.

Очевидно, что $\Delta(G') \leq \Delta(G)$.

Рассмотрим 2 случая.

Верхняя оценка хроматического числа

Доказательство.

Cлучай 1: $\Delta(G') \geq 3$ и в G' найдется такая вершина $u \in V \setminus \{v\}$, что $d_G(v) < \Delta(G')$.

Тогда для графа G' верно предположение индукции и $\chi(G') \leq \Delta(G')$.

Перенесем раскраску вершин графа G' в $\chi(G')$ цветов на вершины графа G.

При этом вершина v останется неокрашенной.

Окрасим вершину v в цвет, который не встречается среди цветов вершин, смежных с ней.

Тогда $\chi(G) \leq \Delta(G)$, т.к. вершина v смежна не более, чем с $\Delta(G)-1$ вершинами.

Верхняя оценка хроматического числа

Доказательство.

вершины графа G.

Случай 2: $\Delta(G')=2$ или в графе G' для каждой вершины $u\in V\setminus \{v\}$, верно $d_G(v)=\Delta(G')$.

Тогда $\Delta(G') \leq \Delta(G) - 1$.

вершин, смежных с ней.

По теореме 2 раскрасим вершины графа G' в $\Delta(G')+1$ цветов. Перенесем раскраску вершин графа G' в $\chi(G')$ цветов на

При этом вершина v останется неокрашенной. Окрасим вершину v в цвет, который не встречается среди цветов

Тогда $\chi(G) \leq \Delta(G)$, т.к. $\chi(G') \leq \Delta(G') + 1 \leq \Delta(G)$ и вершина ν смежна не более, чем с $\Delta(G) - 1$ вершинами.

Теорема Брукса

Если
$$G = K_n$$
, то $\Delta(G) = n - 1$ и $\chi(G) = n$.

Если G — цикл нечетной длины, то $\Delta(G) = 2$ и $\chi(G) = 3$.

Теорема 4 (Брукса). Если граф G не является полным графом или циклом с нечетной длиной, то $\chi(G) \leq \Delta(G)$.

Задачи

- 1. Найти хроматическое число графа G = (V, E), если:
- 1) G граф K_4 без одного ребра;
- 2) G граф K_4 без двух ребер (рассмотреть все возможные случаи);
- 3) G граф K_5 без одного ребра;
- 4) G граф K_5 без двух ребер (рассмотреть все возможные случаи).
- 2. Какое наименьшее число ребер надо удалить из графа G = (V, E), чтобы оставшийся граф можно было раскрасить в k цветов, если:
- 1) $G = K_4$, k = 2;
- 2) $G = K_5$, k = 3;
- 3) $G = K_6$, k = 2;
- 4) G состоит из 7 вершин, занумерованных числами от 0 до 6, и ребер вида $(i, i+1 \pmod{7}), i=0,1,\ldots,6, k=2.$

Конец лекции 5